

Integrated platform for hit identification and optimization: computational and biophysical assets

Prof. Bottegoni - Dr. Elisi - Dr. Vanzolini

Surface

Plasmon

WP1 - Development of a third party-accessible, enabling platform for efficient preclinical drug discovery

Ultra Large Commercial Libraries (10⁹)
 DL-generated Compounds (10⁷)

o Combinatorial SAR Explorations (104)

Compound Prioritization by Computational Means (10²)

Biophysical Assays

HPC platform for virtual screening campaign

TASK1.1 - Setting Up and Validating a Hit Identification Computational Facility as part of VITALITY Enabling Platform for Drug Discovery

HPC infrastructure is currently being installed @Campus Enrico Mattei (P74 01.01.74)

2 AMD Epyc 64-Core 7713 2.00 GHz 256 MB 4 GPU NVIDIA RTX A6000 48 GB Increased storage capacity to nearly 40 TB with a shared repository:	COMPUTER
 □ Prepared libraries, including diversity sets, covalent inhibitors and biomimetics, in a readable format for docking calculation □ Enamine REAL (2022q34) as binary 1D-fingerprints allowing for screening of commercial compounds (purchased Decement Upcoming preparation of Python scripts allowing for: 	
 □ batch interrogation of online databases (i.e., ChEMBL, SwissTargetPrediction, PolyPharmacologyBrowser2, etc.) □ pipeline allowing for active learning docking to prioritize compounds for virtual screening □ customized protocols for molecular dynamics workflows as fast virtual screening post-processing tools 	

HPC platform for virtual screening campaign

Software capabilities

Virtual screening ☐ Structure-based: Glide ☐ Ligand-based: Shape, Phase	Hit identification and validation Lead optimization
Molecular dynamics/enhanced sampling simulations ☐ Desmond, Amber, Gromacs ☐ BiKiLifeSciences	Hit prioritization Lead optimization Mechanistic studies
□ PlumedQM / QM-MM calculations□ Amber, Jaguar	Lead optimization Mechanistic studies Support to synthetic organic chemistry
Data processing □ DataWarrior, Knime □ RDKit, Python libraries	Data analysis Machine learning applications Lead optimization

HPC platform for virtual screening campaign

Case study: Selection of potential adenosine 5'-phosphosulfate reductase potential inhibitors

MM-GBSA score	
(kcal/mol) 🔻	log_RTcalc_min 🔻
-42.35	-1.53
-36.27	-2.09
-43.44	-2.14
-44.59	-2.34
-44.66	-3.09
-49.22	-3.12
-43.04	-3.26
-43.59	-3.30
-40.17	-3.42
-45.76	-3.45
-46.82	-3.47
-39.46	-3.65
-55.13	-4.08
-35.61	-4.48
-39.4	-4.76
-30.27	-3.20
-41.35	-4.80
-45.27	-2.27
-40.24	-3.35
-48.53	-3.62
-38.01	-3.86
-30.24	-4.65
-43.54	-5.68
-35.46	-4.84

in collaboration with Michele Mari and Emanuela Frangipani

Surface Plasmon Resonance

Cytiva Biacore™ 1K

How strong?

Affinity reflects the binding strength

Kinetics determine how fast/slow a complex forms or dissociates

How fast?

How much?

Qualitative and quantitative determination of active analyte concentration

How specific?

Is the molecule **specific** for its target?

How similar?

Comparable to reference product or not?

Proteins and enzymes

DNA/RNA

Antibody fragments

Antibodies

Virus

Dia-T51

N. Gow et al. 2017

Cycle	Flow cell	Sensorgram type	Analysis step purpose	Single cycle kinetics 1 Solution	Single cycle kinetics 1 Concentrations (nM)	SCK binding late_1_6 Relative (RU)	Capture level_2 Relative (RU)
7	2-1	Reference subtracted	Analysis	Laminarin	0.69 2.06 6.17 18.52 55.57 166 [nM]	112.9	2592.0

Group	General Kinetics model	Curve markers	Flow cell	Injection variables Capture 1 Solution	Single cycle kinetics 1 Solution	Quality Kinetics Chi² (RU²)	1:1 binding ka (1/Ms)	kd (1/s)	KD (M)	Rmax (RU)	tc
1	1:1 binding		2-1	Irrilevant mAb	Laminarin	3.29e+00	1.87e+05	6.71e-04	3.59e-09	79.7	1.02e+12