

Study and design of a plant-based biotechnology platform for the production of biopharmaceuticals for human therapy

Elisa Maricchiolo

Università degli Studi di Urbino 23 maggio 2024

Alpha-mannosidosis

Rare inherited disease, affects 1:500,000 people.

PALALA?

Alfa-mannosidase is an exoglycosidase that cleaves alpha-linked mannose residues during the degradation of the N-linked glycans of glycoproteins.

//~

Oligosaccharides progressive deposition in human cells.

Mental retardation and hearing loss from early childhood

Respiratory disfunction

Musculoskeletal abnormalities

Alpha-mannosidase

N-glycosylated, disulphide bridges, zinc binding homodimer formation

Several proteolytic fragments with different molecular weights ranging from **15** to **70 kDa**.

An enzyme diffused in different kingdoms

A small fraction of the alpha-mannosidase precursor is secreted in the extracellular space

Strategy for therapy?

Alpha-mannosidosis therapies

Current approaches:

Enzyme replacement therapy (ERT)

Recombinant protein production, purification and intravenous injection

Bone marrow transplantation (BMT)

Normal donor stem cells release the normal enzyme, which is then widely distributed by host cells upon absorption.

In mice, a corrective effect was observed in those affected by alpha-mannosidosis

Roces et al. (2004)

To date, **there is not** a system for the production of recombinant alpha-mannosidase available on a large scale.

<u>Plant molecular farming*</u> could represent a good strategy for the scale-up production of the alpha-mannosidase recombinant protein

Plants as bioreactors

Aim of the project

Tobacco transformation

Agrobacterium tumefaciens mediated transformation

De Marchis et al., 2011

35S-P FLAG 35S-T SP Alpha-mann Construct: pDHA.(SP)MAN2B1

Tobacco leaves explants Callus induction and regeneration Co-cultivation Agrobacterium

Transformants selection

Seeds collection

tumefaciens

Tobacco hydroponic culture

Hydroponics is the technique of growing plants using a water-based nutrient solution rather than soil

Hydroponic solution parameters adjusted every day:

pH 5.5

EC (Electrical conductivity)2.4 mS/cm

Fixed parameters:

Photoperiod 12h light/12h dark

Light intensity 250 μmol*m⁻²s⁻¹

Tobacco hydroponic culture: sampling (1)

After germination they are transferred to plugs

Before cutting

After 6 weeks (from seeds) plants are cut and collected following different strategies

4 Plants

All leaves sampled together (P_1, P_2, P_3, P_4)

3 Plants

Leaves sampled at different positions
Bottom(B), Medium(M) and Top(T)

(+ 4 plants for dry weight)

(2 batches)

Tobacco hydroponic culture: sampling (2)

After cutting they need 3 weeks to grow to the same size (around 30cm)

After cutting

Regeneration after 4 days

Why to work on regenerated shoots?

Time-saving

Waste reduction

Different protein expression?

(2 batches)

Protein extraction and quantification

SDS-Page

Total soluble protein extraction

Leaves are **grinded** with liquid nitrogen and homogenated

Different extraction systems were tested: best results by using Homogenation Buffer + 2% B-mercaptoethanol

Protein quantification strategy

Western Blot analysis

Protein quantification

Future goals

Test other extraction methods to optimize the alphamannosidase quantity in all samples

Repeat the analysis on the remaining samples and subsequent batches

Proceed with the extraction of total soluble proteins from tobacco calli and compare the content between the two culture systems

Study the enzymatic activity of alpha-mannosidase using a special kit, supporting the WB quantification

CALLUS CULTURE (MS0+ 0,5 mg/L 2,4D + 0,1 KIN)

Sample collection still in progress

Thanks for your attention!

Prof. Andrea Pompa. Prof. Michela Osnato. Pasquale Creanza

Prof. Andrea Pompa, Prof. Michela Osnato, Pasquale Creanza Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Italy

Acknowledgements:

Prof. Matteo Ballottari, Dott. Nico Betterle, Kristina Ljumovic Department of Biotechnology, University of Verona, Italy

Dott. Michele Bellucci, Dott. Francesca De Marchis, Institute of Biosciences and Bioresources (IBBR,CNR) Perugia, Italy