Missione 4 Istruzione e Ricerca

ECOSISTEMA VITALITY

INNOVATIVE THERAPEUTIC APPROACHES: NEW CHEMICAL ENTITIES BIOLOGICS AND DRUGS DELIVERY

Next Generation EU - PNRR - Ecosistemi dell'Innovazione -Missione 4 Istruzione e Ricerca -Componente 2 Dalla ricerca all'impresa - Investimento 15 finanziato dall'Unione Europea

Presentazione chiusura progetto 10 settembre 2025

Diatech Pharmacogenetics è leader in Italia nello sviluppo, produzione e commercializzazione di kit diagnostici per test farmacogenetici per la medicina personalizzata e predittiva.

"Bringing precision medicine to everyone"

OVERVIEW AZIENDALE E MILESTONES

BUSINESS MARKET

- ✓ Diatech è il leader di mercato in Europa nella medicina di precisione, specializzata nello sviluppo e nella commercializzazione di kit diagnostici (IVD) e software applicati alla biologia molecolare in ambito di salute umana
- ✓ Leader globale nella medicina di precisione con +500 clienti attivi in tutto il mondo
- ✓ Portafoglio complete di applicazioni conformi al regolamento IVDR
- ✓ Headquarter presso Jesi (An), Italy

MILESTONES

+500

SITI ATTIVI Più di 40 nazioni

IVD compliant

Uno dei più ampi portafogli IVD, con focus principale sulla medicina di precisione

+500K

TESTS/ANNO
Di soluzioni di test molecolari forniti

ANNI ESPERIENZA

Con focus specifico sullo sviluppo di dispositivi diagnostici in vitro (IVD)

Ricerca e sviluppo e produzione – soluzioni diagnostiche innovative per la medicina oncologica personalizzata.

- + 15% di utile reinvestito in R&D ogni anno
- Un team di ricerca e sviluppo altamente specializzato, dedicato alla medicina personalizzata e aggiornato con le più recenti novità nell'oncologia molecolare
- Un processo di produzione completamente automatizzato, comprensivo della fase di liofilizzazione, con capacità produttive all'avanguardia per supportare il mercato globale

diatech pharmacogenetics

PASSAPORTO FARMACOGENEITCO - software di analisi per il rilevamento con il metodo Next Generation Sequencing

DESCRIZIONE DEL PROGETTO

Realizzazione di un passaporto genetico per la farmacogenetica basato sulla Next Generation Sequencing

OBIETTIVO

Ridurre la barriera all'implementazione clinica dei test farmacogenetici

RISULTATI ATTESI

- Ottimizzazione protocollo sperimentale disponibile
- Realizzazione del software di analisi
- Generazione ed analisi dati sperimentali per training del software
- Validazione del software di analisi dei dati
- Rilascio del software

diatech pharmacogenetics

GANTT DI PROGETTO

			lug-24	ago-24	set-24	ott-24	nov-24	dic-24	gen-25	feb-25	mar-25	apr-25	mag-25	giu-25
Work package title	Lead partic.	Componente Digitale (Sì/No)	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15
Title 1 - ottimizzazione protocollo sperimentale disponibile														
Task 1.1 selezione reagenti		NO												
Task 1.2 verifica sperimentale dei materiali		NO												
Task 1.3 esecuzione protocollo sperimentale per definizione parametri software		SI												
Title 2 - realizzazione del software di analisi														
task 2.1 - Disegno del software di analisi dati		SI												
Title 3 - Generazione ed analisi dati sperimentali per training del software														
Task 3.1 - realizzazione del lotto pilota dei reagenti		NO												
Task 3.2 - esecuzione test sperimentali per sensibilità, specificità e robustezza per training del software		SI												
Title 4 - Validazione del software di analisi dei dati														
Task 4.1 - verifica dei risultatai di campioni		SI												
Title 5 - rilascio del software														
Task 5.1 -predisposizione della documentazione tecnica informatica per registrazione del software per uso in vitro diagnostico		SI												

Myriapod® NGS PGx Sign panel

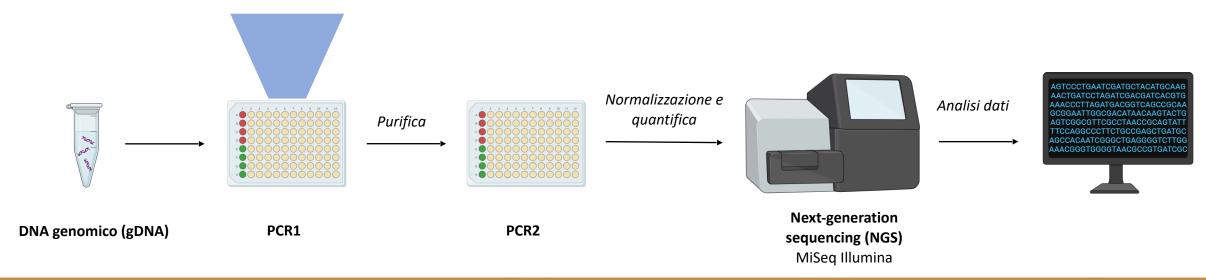
- **1018 polimorfismi** (SNVs, Indels) di interesse farmacogenetico in **20 geni** coinvolti nel metabolismo di farmaci
- Copy Number Variation (CNV) del gene CYP2D6
- Librerie Next Generation Sequencing (NGS) compatibili con le piattaforme Illumina "MiSeq®", "MiSeq i100 Plus", "iSeq™ 100"

Il test ha lo scopo di supportare i clinici nell'identificazione di varianti di interesse farmacogenetico incluse nelle linee guida CPIC e DPWG, al fine di stabilire il dosaggio di un determinato medicinale per i pazienti che sono già idonei a riceverlo.

Geni analizzati							
ABCG2	CYP2D6	F5	RYR1				
CACNA1S	CYP3A4	G6PD	SLCO1B1				
CYP2B6	CYP3A5	IFNL3	TPMT				
CYP2C19	CYP4F2	MT-RNR1	UGT1A1				
CYP2C9	DPYD	NUDT15	VKORC1				

Myriapod® NGS PGx Sign panel

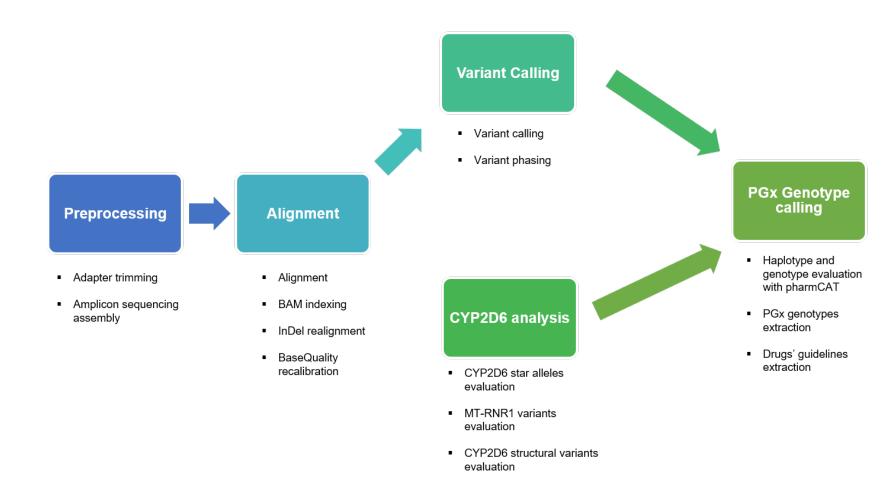
	Myriapod® NGS PGx Sign panel
Tipologia campione	Sangue
Input DNA	20-100ng
Numero di campioni per run con coverage >30X	Min. 6 Max. 24
Preparazione libreria	~6 h
Codice prodotto	NGX037

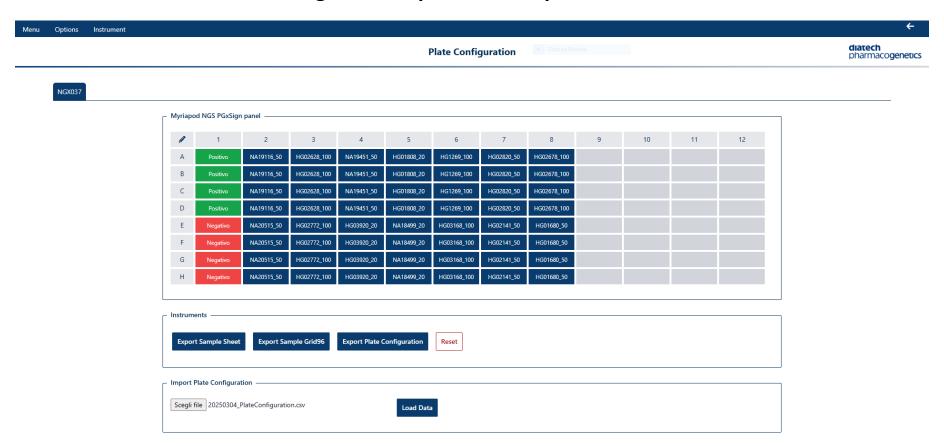

Myriapod® NGS PGx Sign panel

	Myriapod® NGS PGx Sign panel
Uniformità	≥70%
Off-target	≤15%
Accuratezza	99%
Precisione	100%
Sensitività	100%
Specificità	100%
Ripetibilità	100%

PROTOCOLLO SPERIMENTALE

	1	2	3	4	5	6	7	8	9	10	11	12
Α	POS ctrl	DNA1	DNA3	DNA5	DNA7	DNA9	DNA11	DNA13	DNA15	DNA17	DNA19	DNA21
В	POS ctrl	DNA1	DNA3	DNA5	DNA7	DNA9	DNA11	DNA13	DNA15	DNA17	DNA19	DNA21
С	POS ctrl	DNA1	DNA3	DNA5	DNA7	DNA9	DNA11	DNA13	DNA15	DNA17	DNA19	DNA21
D	POS ctrl	DNA1	DNA3	DNA5	DNA7	DNA9	DNA11	DNA13	DNA15	DNA17	DNA19	DNA21
Е	WATER	DNA2	DNA4	DNA6	DNA8	DNA10	DNA12	DNA14	DNA16	DNA18	DNA20	DNA22
F	WATER	DNA2	DNA4	DNA6	DNA8	DNA10	DNA12	DNA14	DNA16	DNA18	DNA20	DNA22
G	WATER	DNA2	DNA4	DNA6	DNA8	DNA10	DNA12	DNA14	DNA16	DNA18	DNA20	DNA22
Н	WATER	DNA2	DNA4	DNA6	DNA8	DNA10	DNA12	DNA14	DNA16	DNA18	DNA20	DNA22




diatech pharmacogenetics

WORKFLOW DI ANALISI

Configurazione piastra di sequenziamento

In questa pagina è possibile specificare i campioni da sequenziare, e il loro posizionamento all'interno della piastra.

Progresso analisi corsa

In questa pagina è possibile visualizzare lo stato della corsa in analisi.

Dettagli della corsa

In questa pagina vengono elencati, per la corsa analizzata, i campioni sequenziati, insieme alle loro metriche.

Dettagli del campione

Per ciascun campione è possibile visualizzare e scaricare i risultati dell'analisi. In particolare, vengono visualizzate le metriche, la conformità, i genotipi delle varianti PGx, il numero di copie del gene *CYP2D6* e il report PGx generato da PharmCAT.

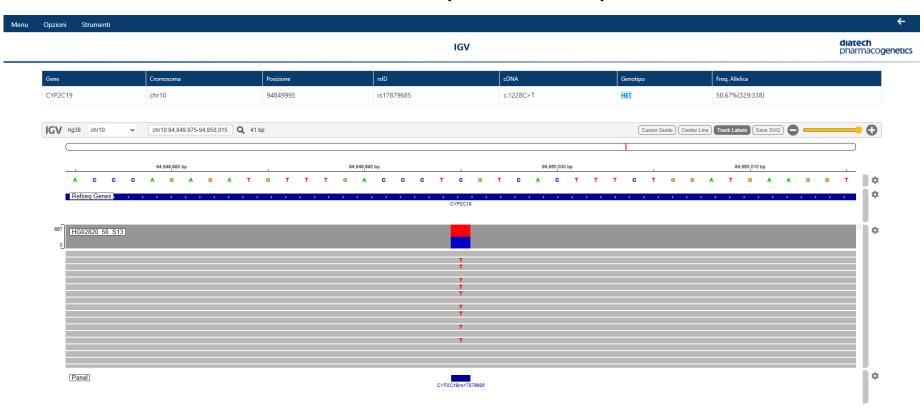
Varianti PGx

Metriche Varianti PGx CNV CYP2D6 Report PGx

Azioni	Gene 🔻	rs ID	cDNA ▼	Cambio Aminoacidico	Chiamata	Reference	Genotipo 🔻 Warning	1KG 🔽	gnomAD 🔻
□ 6 5 □	CYP2C19	rs4986893	c.636G>A	p.Trp212*	G G	G	WT	1.31	0.29
□ 6 	CYP2C19	rs6413438	c.680C>T	p.Pro227Leu	C C	С	WT	0.05	0.02
□ 6 5 □	CYP2C19	rs4244285	c.681G>A	p.Pro227Pro	G G	G	WT	21.55	16.79
□ 6 5 ♀	CYP2C19	rs375781227	c.766G>A	p.Asp256Asn	G G	G	WT		
□ 6 5 ♀	CYP2C19	rs72558186	c.819+2T>A		Т Т	Т	WT		
□ 6 5 □	CYP2C19	rs138142612	c.986G>A	p.Arg329His	G G	G	WT		
□ 6 5 □	CYP2C19	rs3758581	c.991A>G	p.lle331Val	G G	A	MUT	95.42	93.87
□ 6 5 ♀	CYP2C19	rs118203757	c.1004G>A	p.Arg335Gln	G G	G	WT		0.01
□ 6 5 □	CYP2C19	rs113934938	c.1120G>A	p.Val374lle	G G	G	WT		
□ 6 5 □	CYP2C19	rs17879685	c.1228C>T	p.Arg410Cys	C T	С	HET	0.59	0.09
□ 6 5 □	CYP2C19	rs56337013	c.1297C>T	p.Arg433Trp	c c	С	WT		
□ 6 5 □	CYP2C19	rs192154563	c.1324C>T	p.Arg442Cys	c c	С	WT		
□ 6 5 □	CYP2C19	rs118203759	c.1344C>G	p.Phe448Leu	c c	С	WT		

Crea report PGx

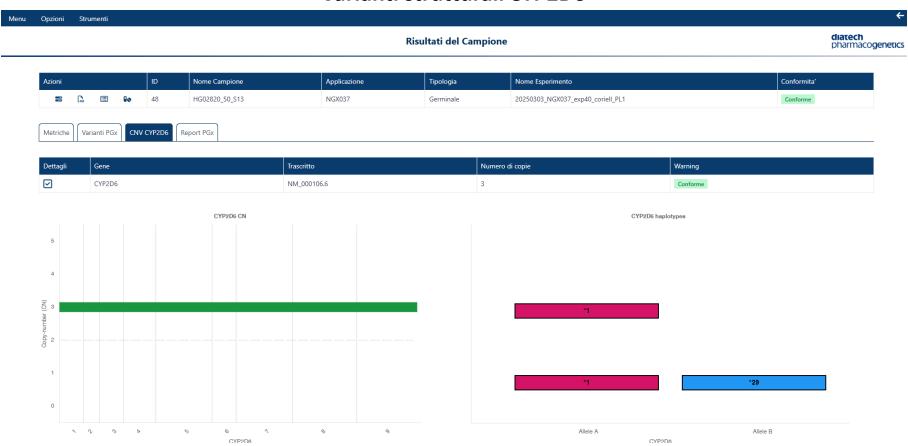
Tabella dei polimorfismi PGx analizzati. Per ciascuno di questi è specificato il genotipo (WT,HET,MUT), insieme ad altre informazioni generali.

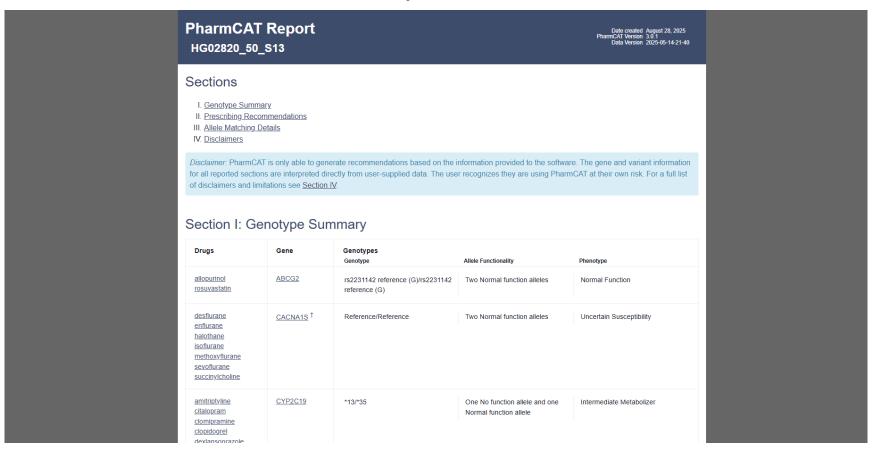

Varianti PGx (dettagli)

Dettagli Variante		×
Gene:	CYP2C19	
Cromosoma:	chr10	
Posizione:	94849995	
Trascritto:	NM_000769.4	
Ref:	С	
Alt:	T	
cDNA:	c.1228C>T	
Cambio Aminoacidico:	p.Arg410Cys	
rs ID:	rs17879685	
%(Ref:Alt):	50.67%(329:338)	
Genotipo:	HET	

Per ciascun polimorfismo è possibile visualizzare dettagli aggiuntivi, che includono posizione cromosomica, rsID, frequenza allelica.

Varianti PGx (visualizzazione)


Ciascun polimorfismo è visualizzabile tramite l'apposito programma IGV, integrato all'interno dell'applicazione.


Varianti strutturali CYP2D6

Visualizzazione del numero di copie del gene CYP2D6 e degli aplotipi identificati.

Report PGx

Report PGx generato da PharmCAT, visualizzabile all'interno dell'applicazione o scaricabile in formato HTML.

VALIDAZIONE DEL SOFTWARE DI ANALISI

OBIETTIVO: valutare le prestazioni del software di analisi nel valutare correttamente i polimorfismi PGx e le variazioni strutturali di *CYP2D6*

Valutazione delle performance effettuata utilizzando:

- 3 campioni di riferimento golden standard (NA12878, NA24149, NA24143), per il quale si conosce il genotipo di ciascuna delle posizioni analizzate dal kit.
- 152 campioni commerciali Coriell, aventi polimorfismi e variazioni strutturali di CYP2D6 individuabili dal kit.
- 68 campioni clinici da sangue intero in EDTA.
- 290 campioni simulati *in silico*, al fine di inserire in maniera puntuale specifici polimorfismi PGx da voler valutare.

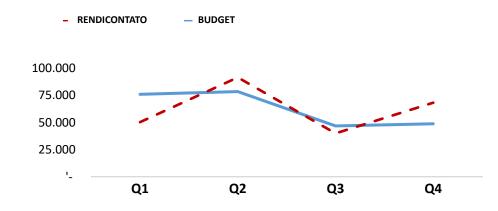
VALIDAZIONE DEL SOFTWARE DI ANALISI

Risultati

75000+

200+

Polimorfismi a genotipo noto analizzati


Varianti strutturali del gene *CYP2D6* analizzate

- **✓** Accuratezza nella classificazione dei polimorfismi: >99%
- ✓ Accuratezza nella classificazione delle varianti strutturali di CYP2D6: >99%
- Risultati riproducibili e ripetibili
- ✓ Testato in presenza di interferenti endogeni ed esogeni

CRONOPROGRAMMA SPESE RENDICONTATE

Totale spesa rendicontata identica al Bdg iniziale Intensità di aiuto erogata leggermente inferiore rispetto a quella prevista inizialmente, per diversa composizione delle spese rispetto al cronoprogramma iniziale

Grazie per l'attenzione

Diatech Pharmacogenetics srl oliva.alberti@diatechpgx.com