

3D-ALIGN

Allineatori dentali realizzati con una nuova resina biocompatibile tramite stampa 3D: risultati della validazione del proof-of-concept

Partner di progetto

Background

- Gli allineatori dentali tradizionali (in termoplastica) offrono vantaggi rispetto ad altre soluzioni ortodontiche.
- Tuttavia essi presentano anche diverse limitazioni:
 - eccessiva richiesta di attachment
 - lentezza nel processo di adattamento dentale
 - personalizzazione non ottimale
 - passaggi intermedi di produzione
 - deformazione del materiale durante la termoformatura
- Queste criticità stanno incentivando la ricerca verso soluzioni alternative.

Progetto 3D-ALIGN

 Obiettivo generale: creare una nuova formulazione di resina fotopolimerizzabile per la stampa 3D di allineatori ortodontici, che ottimizzi il comfort e la sicurezza per il paziente, il processo di produzione, e le proprietà meccaniche e l'efficienza del prodotto.

Obiettivi specifici:

- 1. Analizzare e profilare le resine utilizzate dai competitor (WP1);
- 2. Realizzare una nuova resina biocompatibile che sia qualitativamente superiore a quelle dei competitor (WP2);
- 3. Testare e validare il proof-of-concept della nuova resina (WP3).

		Jul-24	Aug	g- 2 4	Sep	o-24	Oc	t-24	Nov	-24	Dec	-24	Jan	-25	Feb	-2 5	Ma	r-25	Арг	-25	May	-25	Jun	-25	Jul-	25
#	Work package title	N	<i>/</i> 11	N	12	N	13	N	14	M	5	М	6	M	/ 17	N	18	N	19	M	10	M	11	M12	2	M13
1	WP1 Profilazione e analisi delle resine concorrenti																									
	Task 1.1 – Raccolta, analisi e test delle resine concorrenti																									
	Task 1.2 – Profilazione e analisi di gap e benchmark			M1																						
2	WP2 Realizzazione della nuova resina																									
	Task 2.1 – Sviluppo iterativo della formulazione						M2																			
	Task 2.2 – Prove meccaniche e di laboratorio																									
	Task 2.3 – Definizione della formulazione finale												МЗ													
3	WP3 Test e validazione																									
	Task 3.1 – Biological evaluation plan (BEP)												M4													
	Task 3.2 – Test di biocompatibilità e biological evaluation report (BER)																									M5
	Task 3.3 – Estensione dei test di biocompatibilità																							M6		
	Task 3.4 – Ottimizzazione del design e analisi di fattibilità tecnico-scientifi																									M7
_	•																									$\overline{}$

5

		Jul-24	Au	g-24	Sep	o-24	Oc	t-24	Nov	<i>ı</i> -24	Dec	:-24	Jan	-2 5	Fel)-25	Mar	-25	Арі	r-25	May-25	5	Jun-	-25	Jul-	-25
#	Work package title	V	<i>J</i> 11	N		N	13	N	<i>1</i> 14	N	15	M	16	M	/ 17	M	18	M	19	М	10	M11	1	M1	12	M13
1	WP1 Profilazione e analisi delle resine concorrenti																									
	Task 1.1 – Raccolta, analisi e test delle resine concorrenti																									
	Task 1.2 – Profilazione e analisi di gap e benchmark			M1																						
2	WP2 Realizzazione della nuova resina																									
	Task 2.1 – Sviluppo iterativo della formulazione						M2																			
	Task 2.2 – Prove meccaniche e di laboratorio																									
	Task 2.3 – Definizione della formulazione finale												МЗ													
3	WP3 Test e validazione																									
	Task 3.1 – Biological evaluation plan (BEP)												M4													
	Task 3.2 – Test di biocompatibilità e biological evaluation report (BER)																									M5
	Task 3.3 – Estensione dei test di biocompatibilità																							M6		
	Task 3.4 – Ottimizzazione del design e analisi di fattibilità tecnico-scientifi																									M7
		-	•				•				•	•			•	•			-							

-5

		Jul-24	Aug	g-24	Sep)-24	Oc	t-24	Nov	-24	Dec	:-24	Jan	-25	Feb	-25	Mar-	-25	Арг	r-25	May	25	Jun	-25	Jul	-25
#	Work package title	N	<i>/</i> I1	M		N	13	N	/ 14	M	5	М	6	М	7	M	8	M	19	М	10	M1	1	M	12	M13
1	WP1 Profilazione e analisi delle resine concorrenti																									
	Task 1.1 – Raccolta, analisi e test delle resine concorrenti																								1	
	Task 1.2 – Profilazione e analisi di gap e benchmark			M1																						
2	WP2 Realizzazione della nuova resina																									
	Task 2.1 – Sviluppo iterativo della formulazione						M2																			
	Task 2.2 – Prove meccaniche e di laboratorio																									
	Task 2.3 – Definizione della formulazione finale												МЗ													
3	WP3 Test e validazione																									
	Task 3.1 – Biological evaluation plan (BEP)												M4													
	Task 3.2 – Test di biocompatibilità e biological evaluation report (BER)																									M5
	Task 3.3 – Estensione dei test di biocompatibilità																							M6		
	Task 3.4 – Ottimizzazione del design e analisi di fattibilità tecnico-scientifi																									M7
		-	•				•							•												

5

		Jul-24	Auç	g-24	Sep	o-24	Oc	t-24	Nov	<i>ı</i> -24	Dec	-24	Jan	-25	Feb	-25	Mar	-25	Арі	r-25	May-2	5	Jun	-25	Jul-	-25
#	Work package title	N	/ 11	V	}	N	13	N	Л4	M	5	М	6	M	7	N	18	N	19	М	10	M11	1	M1	12	M13
1	WP1 Profilazione e analisi delle resine concorrenti																									
	Task 1.1 – Raccolta, analisi e test delle resine concorrenti																									
	Task 1.2 – Profilazione e analisi di gap e benchmark			M1																						
2	WP2 Realizzazione della nuova resina																									
	Task 2.1 – Sviluppo iterativo della formulazione						M2																			
	Task 2.2 – Prove meccaniche e di laboratorio																									
	Task 2.3 – Definizione della formulazione finale												МЗ													
3	WP3 Test e validazione																									
	Task 3.1 – Biological evaluation plan (BEP)												M4													
	Task 3.2 – Test di biocompatibilità e biological evaluation report (BER)																									M5
	Task 3.3 – Estensione dei test di biocompatibilità																							M6		
	Task 3.4 – Ottimizzazione del design e analisi di fattibilità tecnico-scientifi																									M7
		-																			<u> </u>					

5

• Ricerca bibliografica: aggiornamento sullo stato dell'arte riguardante la stampa 3D di allineatori ortodontici e la selezione di resine di riferimento (benchmark): NextDent Ortho Clear (Vertex-Dental, Paesi Bassi), V-Print Splint Comfort (Voco, Germania), TeraHarz TC-85 DAC (Graphy, Corea del Sud).

- **Ricerca bibliografica**: aggiornamento sullo stato dell'arte riguardante la stampa 3D di allineatori ortodontici e la selezione di resine di riferimento (*benchmark*): NextDent Ortho Clear (Vertex-Dental, Paesi Bassi), V-Print Splint Comfort (Voco, Germania), TeraHarz TC-85 DAC (Graphy, Corea del Sud).
- Profilazione delle resine concorrenti: analisi di risonanza magnetica nucleare protonica (H-NMR) e di cromatografia liquida (HPLC) su campioni delle resine individuate e procurate, integrate con le analisi termiche di calorimetria a scansione differenziale (DSC).

- Ricerca bibliografica: aggiornamento sullo stato dell'arte riguardante la stampa 3D di allineatori ortodontici e la selezione di resine di riferimento (benchmark): NextDent Ortho Clear (Vertex-Dental, Paesi Bassi), V-Print Splint Comfort (Voco, Germania), TeraHarz TC-85 DAC (Graphy, Corea del Sud).
- Profilazione delle resine concorrenti: analisi di risonanza magnetica nucleare protonica (H-NMR) e di cromatografia liquida (HPLC) su campioni delle resine individuate e procurate, integrate con le analisi termiche di calorimetria a scansione differenziale (DSC).
- Valutazione di stampabilità degli allineatori: prove di stampa diretta seguendo le indicazioni di processamento post-stampa indicati dai fabbricanti.

- **Ricerca bibliografica**: aggiornamento sullo stato dell'arte riguardante la stampa 3D di allineatori ortodontici e la selezione di resine di riferimento (*benchmark*): NextDent Ortho Clear (Vertex-Dental, Paesi Bassi), V-Print Splint Comfort (Voco, Germania), TeraHarz TC-85 DAC (Graphy, Corea del Sud).
- Profilazione delle resine concorrenti: analisi di risonanza magnetica nucleare protonica (H-NMR) e di cromatografia liquida (HPLC) su campioni delle resine individuate e procurate, integrate con le analisi termiche di calorimetria a scansione differenziale (DSC).
- Valutazione di stampabilità degli allineatori: prove di stampa diretta seguendo le indicazioni di processamento post-stampa indicati dai fabbricanti.
- Determinazione del residuo monomerico non reagito: da analizzare a valle del processo di stampa e di trattamento post-stampa ai fini della compliance con la norma ISO 20795-2 (polimeri nel cavo orale).

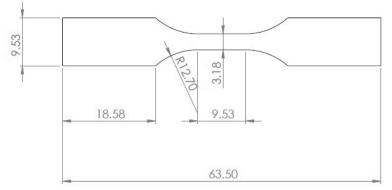
- **Ricerca bibliografica**: aggiornamento sullo stato dell'arte riguardante la stampa 3D di allineatori ortodontici e la selezione di resine di riferimento (*benchmark*): NextDent Ortho Clear (Vertex-Dental, Paesi Bassi), V-Print Splint Comfort (Voco, Germania), TeraHarz TC-85 DAC (Graphy, Corea del Sud).
- Profilazione delle resine concorrenti: analisi di risonanza magnetica nucleare protonica (H-NMR) e di cromatografia liquida (HPLC) su campioni delle resine individuate e procurate, integrate con le analisi termiche di calorimetria a scansione differenziale (DSC).
- Valutazione di stampabilità degli allineatori: prove di stampa diretta seguendo le indicazioni di processamento post-stampa indicati dai fabbricanti.
- Determinazione del residuo monomerico non reagito: da analizzare a valle del processo di stampa e di trattamento post-stampa ai fini della compliance con la norma ISO 20795-2 (polimeri nel cavo orale).

- **Ricerca bibliografica**: aggiornamento sullo stato dell'arte riguardante la stampa 3D di allineatori ortodontici e la selezione di resine di riferimento (*benchmark*): NextDent Ortho Clear (Vertex-Dental, Paesi Bassi), V-Print Splint Comfort (Voco, Germania), TeraHarz TC-85 DAC (Graphy, Corea del Sud).
- Profilazione delle resine concorrenti: analisi di risonanza magnetica nucleare protonica (H-NMR) e di cromatografia liquida (HPLC) su campioni delle resine individuate e procurate, integrate con le analisi termiche di calorimetria a scansione differenziale (DSC).
- Valutazione di stampabilità degli allineatori: prove di stampa diretta seguendo le indicazioni di processamento post-stampa indicati dai fabbricanti.
- Determinazione del residuo monomerico non reagito: da analizzare a valle del processo di stampa e di trattamento post-stampa ai fini della compliance con la norma ISO 20795-2 (polimeri nel cavo orale).

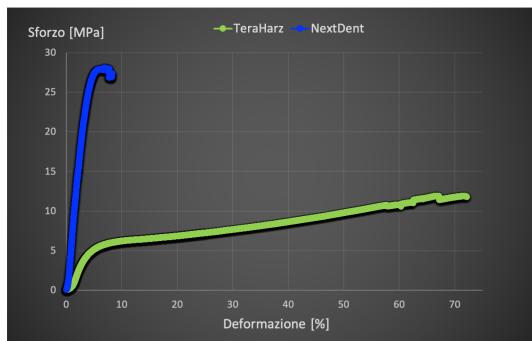
• La resina **NextDent** è quella i cui componenti chimici sono stati completamente profilati, e che ha mostrato la **migliore stampabilità** di allineatori, ma anche maggiore **rigidezza**.

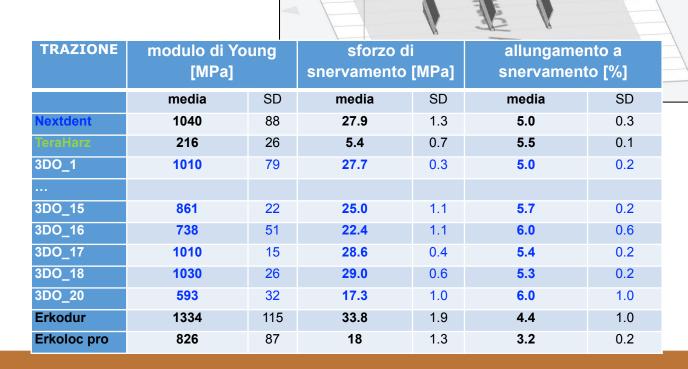
- La resina NextDent è quella i cui componenti chimici sono stati completamente profilati, e che ha mostrato la migliore stampabilità di allineatori, ma anche maggiore rigidezza.
- Un allineatore stampato con la resina TeraHarz è più flessibile, ma ha mostrato delle criticità di stampabilità e che richiede un processamento post-stampa più complesso.

- La resina NextDent è quella i cui componenti chimici sono stati completamente profilati, e che ha mostrato la migliore stampabilità di allineatori, ma anche maggiore rigidezza.
- Un allineatore stampato con la resina TeraHarz è più flessibile, ma ha mostrato delle criticità di stampabilità e che richiede un processamento post-stampa più complesso.
- La resina V-Print è risultata invece la meno indicata delle tre, risultando non idonea a stampare dispositivi sottili come gli allineatori dentali.



- La resina NextDent è quella i cui componenti chimici sono stati completamente profilati, e che ha mostrato la migliore stampabilità di allineatori, ma anche maggiore rigidezza.
- Un allineatore stampato con la resina TeraHarz è più flessibile, ma ha mostrato delle criticità di stampabilità e che richiede un processamento post-stampa più complesso.
- La resina V-Print è risultata invece la meno indicata delle tre, risultando non idonea a stampare dispositivi sottili come gli allineatori dentali.





Proprietà meccaniche - trazione -

SD

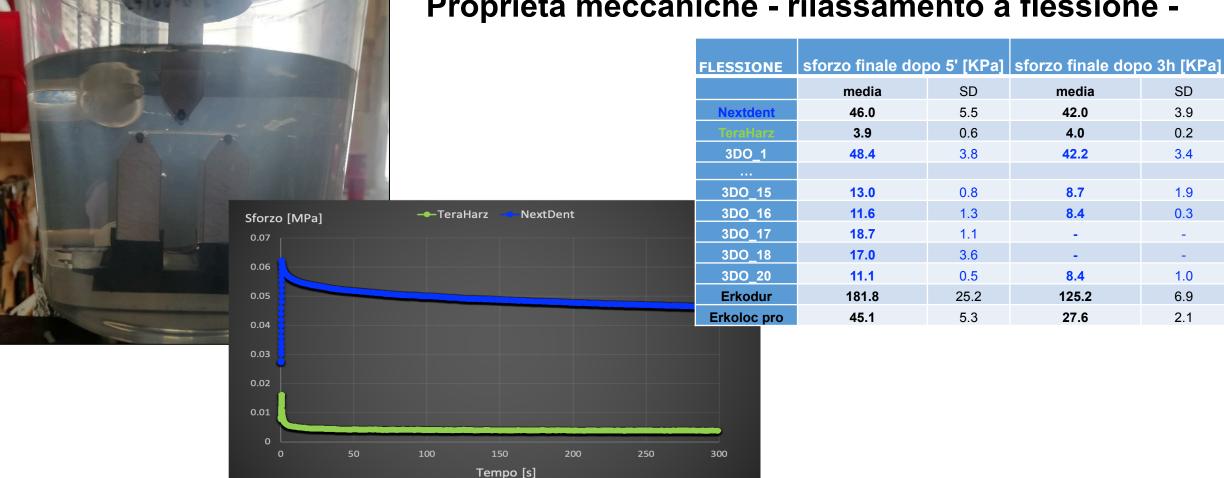
3.9

0.2

3.4

1.9

0.3

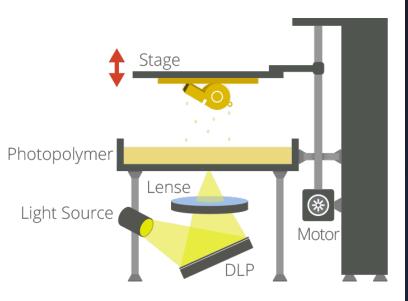

1.0

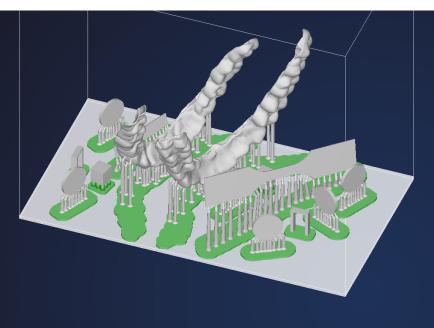
6.9

2.1

WP2: Sviluppo iterativo della formulazione

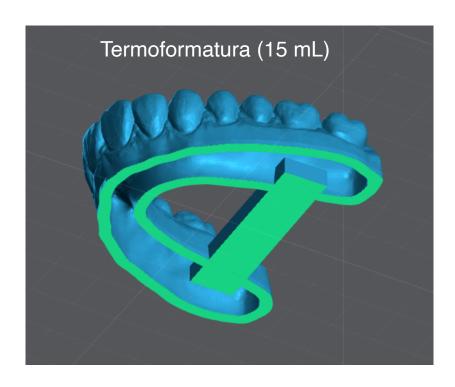
Proprietà meccaniche - rilassamento a flessione -

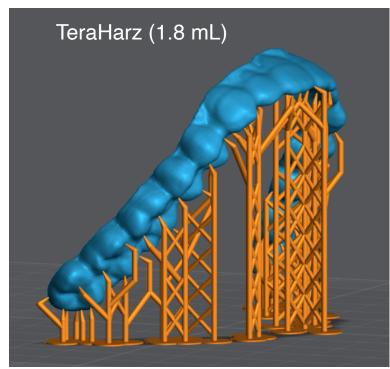


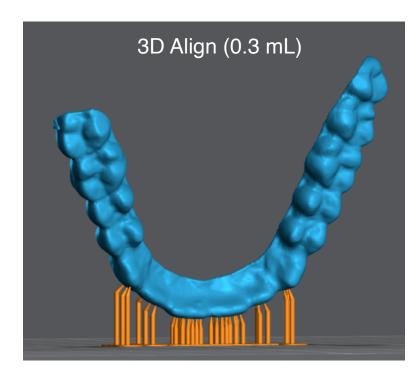


t_exp	NextDent	3DO_1	3DO_2	3DO_3	3DO_4	3DO_5	3DO_6	3DO_7	3DO_8	3DO_10	3DO_11	 3DO_20
[ms]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]	[µm]
800	130	220	250-260	220	220	260	240-250	insuff.	90	50	90-100	90-100
1000	140-150	240-260	340	250	250	320	320	insuff.	100	60	100	110

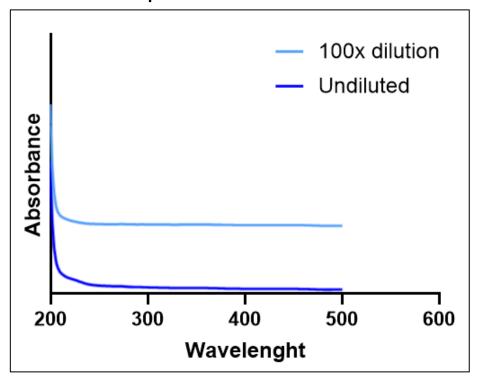
Stampabilità







Riduzione materiale di supporto/scarto

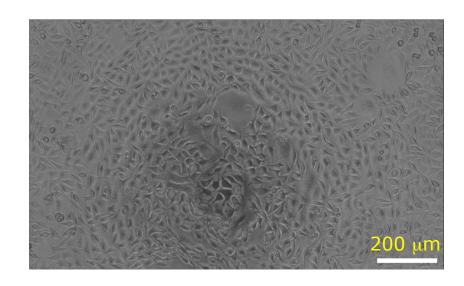


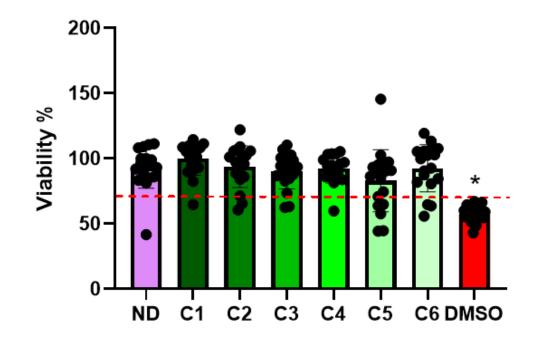
Analisi preliminare dei residui

Spettro UV-vis

Estrazioni in cloroformio a riflusso e analisi HPLC dell'estratto

	peso iniziale [g]	peso estratto [g]	%	% Uretano	% HEMA	% Fosfina
3DO a	1.34	0.05	4.1	0.2	0.2	0.0
3DO b	1.28	0.05	3.9	0.1	0.0	-
3DO c	1.29	0.05	3.9	0.2	-	0.0
3DO d	1.33	0.06	4.3	0.2	-	0.0
3DO e	1.32	0.05	4.0	0.1	-	0.0





Analisi preliminare della citotossicità

- ➤ Incubazione dei dischetti in 1mL di medium di coltura (MEM), a 37°C, per 72h
- > Estrazione del medium
- ➤ Deposizione cellule (linea L929), 37°C
- ➤ Analisi a 24h (6 diluizioni x 6 repliche)

ı	Medical device categori	zation by			Bi	ologic	al effe	ct	,	
	f body contact see 5.2) Contact	contact duration (see 5.3) A – limited (≤ 24 h) B – prolonged (> 24 h to 30 d) C – permanent (> 30 d)	Cytotoxicity	Sensitization	Irritation or intracutaneous reactivity	Systemic toxicity (acute)	Subchronic toxicity (subacute toxicity)	Genotoxicity	Implantation	Haemocompatibility
		А	Ха	Χ	X					
	Skin	В	X	X	Х					
		С	X	X	Х					
		А	Χ	X	Х					
Surface device	Mucosal membrane	В	Χ	Χ	Χ					
		С	X	Χ	X		Χ	Χ		
	Proached or	Χ	X							
	compromised surface	В	Χ	Χ	Х					
	<u> </u>	С	Χ	Χ	Χ		Χ	Χ		
		А	X	Χ	Х	Х				Х
	Blood path, indirect	В	Х	Χ	Х	X				Х
		С	Х	Х		Х	Х	Х		Х
External		А	Χ	Х	Х					
communicating device	Tissue/bone/dentin	В	Х	Χ	Х	X	Χ	Χ	Χ	
device		С	Х	Х	Х	Χ	Χ	Χ	Х	
		A	Х	Χ	Х	Χ				Х
	Circulating blood	В	X	X	Х	Х	Х	Х	Х	Х
		С	X	Х	Х	Х	Х	Χ	Х	Х
		A	X	X	X					
	Tissue/bone	В	X	X	X	X	Х	Х	X	
Implant device		C	X	X	X	X	Х	X	X	<u> </u>
	<u> </u>	A	X	X	X	X	X		X	X
	Blood	В	X	X	X	X	Х	X	X	X
		С	Χ	X	X	Χ	Χ	Χ	Χ	Χ

WP3: Biological Evaluation Plan – ISO 10993

Endpoint for biological evaluation	Action required	Paragraph
Physical and/or chemical information	No action required. Test performed.	§ 6.4
Cytotoxicity	Cytotoxicity Test	§ 7.2
Sensitization	Sensitization Test	§ 7.3
Irritation test	Oral Mucosa Irritation Test	§ 7.4
Acute Systemic Toxicity	No action required	§ 6.4
Subacute Toxicity	No action required	§ 6.4
Subchronic Toxicity and Chronic Toxicity	No action required	§ 6.4
Implantation effects assessment	No action required	§ 6.4
Genotoxicity	AMES Test	§ 6.4 and § 7.5
Reproductive and developmental toxicity	No action required.	§ 6.4

WP3: Biological Evaluation Report – ISO 10993

Citotossicità 🔽

Test chimici sugli estratti:

- gascromatografia – spettrometria di massa 🔽

- headspace gascromatografia – spettrometria di massa

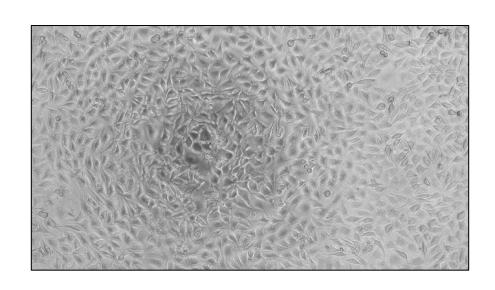
- spettrometria di emissione ottica 🔽

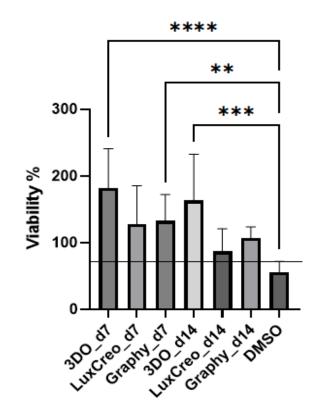
Tossicità sistemica acuta/subacuta

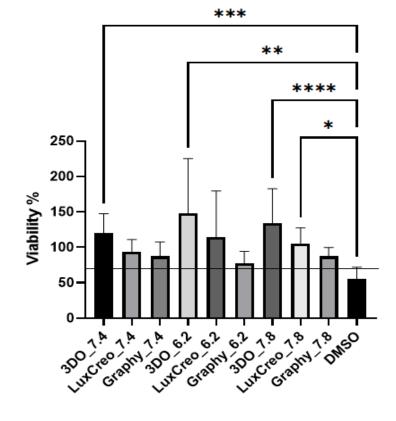
Genotossicità X

Irritazione Orale V

Sensibilizzazione V

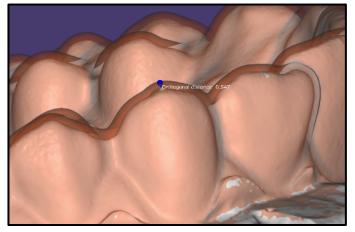


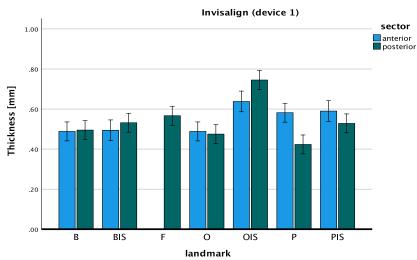


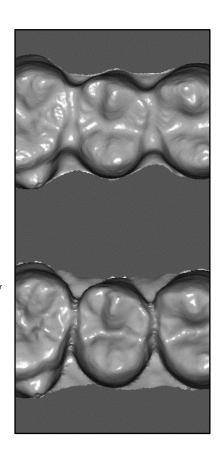


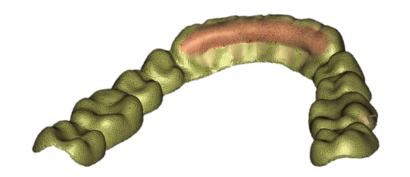
WP3: Estensione test di citotossicità (tempo e pH)

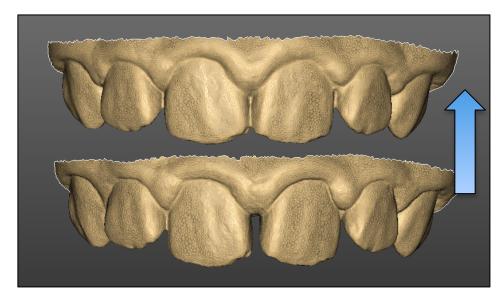
рН	Tempo incubazione	n
7.4	24h, 7g, 14g	3, 3, 3
6.2	24h	3
7.8	24h	3










WP3: Ottimizzazione design e validazione clinica

Conclusioni

- Il progetto ha permesso di realizzare e validare una nuova resina con proprietà comparabili superiori a quelle già esistenti.
- La resina ha un profilo biologico favorevole dimostrato secondo ISO 10993 e rafforzato da estensioni sperimentali.
- Abbiamo validato un flusso produttivo multi-piattaforma validato a livello di requisiti e controlli, pronto per l'industrializzazione.
- Il **percorso regolatorio** verso la messa in servizio e l'immissione in commercio è chiaro e praticabile nei mercati target di UE e US.

Dott. Francesco Barbabella

Amber srls

francesco.barbabella@ambersrl.com

Ing. Andrea Mapelli

3D Objects & Data Software SA

andrea.mapelli@3dobj.ch

Grazie per l'attenzione